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Neurons in the gustatory cortex (GC) represent taste through time-varying changes in their spiking activity. The predominant
view is that the neural firing rate represents the sole unit of taste information. It is currently not known whether the phase
of spikes relative to lick timing is used by GC neurons for taste encoding. To address this question, we recorded spiking ac-
tivity from .500 single GC neurons in male and female mice permitted to freely lick to receive four liquid gustatory stimuli
and water. We developed a set of data analysis tools to determine the ability of GC neurons to discriminate gustatory infor-
mation and then to quantify the degree to which this information exists in the spike rate versus the spike timing or phase
relative to licks. These tools include machine learning algorithms for classification of spike trains and methods from geomet-
ric shape and functional data analysis. Our results show that while GC neurons primarily encode taste information using a
rate code, the timing of spikes is also an important factor in taste discrimination. A further finding is that taste discrimina-
tion using spike timing is improved when the timing of licks is considered in the analysis. That is, the interlick phase of
spiking provides more information than the absolute spike timing itself. Overall, our analysis demonstrates that the
ability of GC neurons to distinguish among tastes is best when spike rate and timing is interpreted relative to the timing
of licks.
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Significance Statement

Neurons represent information from the outside world via changes in their number of action potentials (spikes) over time.
This study examines how neurons in the mouse gustatory cortex (GC) encode taste information when gustatory stimuli are
experienced through the active process of licking. We use electrophysiological recordings and data analysis tools to evaluate
the ability of GC neurons to distinguish tastants and then to quantify the degree to which this information exists in the spike
rate versus the spike timing relative to licks. We show that the neuron’s ability to distinguish between tastes is higher when spike
rate and timing are interpreted relative to the timing of licks, indicating that the lick cycle is a key factor for taste processing.

Introduction
Our motivation to eat depends on the taste of food and on the
reward experienced while eating. Taste information is processed
through neural computations that occur in interconnected brain
areas that include the gustatory portion of the insular cortex

(GC), the primary cortical area responsible for processing taste
information (Spector and Travers, 2005; Vincis and Fontanini,
2019). Neurons of the GC have been extensively studied and are
known to represent taste through changes in their spiking activ-
ity. These responses reflect the ongoing processing and integra-
tion of diverse gustatory information. For instance, GC neurons
respond to the chemosensory qualities and hedonic value of gus-
tatory stimuli while also accounting for sensory cues that antici-
pate the availability of food, and behavioral states (Katz et al.,
2001; Fontanini and Katz, 2006; Samuelsen et al., 2012; Vincis
and Fontanini, 2016). The predominant view is that the changes
in neural firing rate over seconds-long temporal windows repre-
sents the basic unit of gustatory information through which fea-
tures of taste stimuli, such as their identity and hedonic value,
are extracted (Katz et al., 2001; Jezzini et al., 2013; Levitan et al.,
2019; Bouaichi and Vincis, 2020).

Key questions regarding the dynamics of taste-evoked spiking
activity in single cortical neurons remain unanswered. Liquid
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gustatory stimuli are sensed by rodents through stereotyped
licking behavior (Travers et al., 1997). This process, much like
the role of sniffing for the sense of smell (Shusterman et al.,
2011), provides rhythmic orofacial motor activity to the brain
that can be used as a metronome against which neural activity
can be aligned. Yet, it is currently unknown whether the lick cycle
plays a role in taste coding. How important is the rate of spikes
within “lick-cycle-long” time intervals (as opposed to rate changes
over randomly defined and lick-unrelated temporal windows) in
GC neurons for distinguishing tastes? The second question involves
action potential timing between licks. Does the time of spiking rela-
tive to licks (phase coding) contain information that can be used by
GC neurons to discriminate different stimuli? Finally, if phase cod-
ing is used by GC coding neurons, how much does it improve taste
discrimination?

To address these questions, we recorded spiking activity from
single GC neurons in mice permitted to freely lick to receive four
liquid gustatory stimuli (sucrose, NaCl, citric acid, and quinine) and
water (Bouaichi and Vincis, 2020). We then used a supervised
machine learning algorithm, called a support vector machine
(SVM), and methods from shape and functional data analysis to
determine the extent to which taste information can be distin-
guished using spike rate, spike timing, or both. We then performed
a separate analysis in which spike timing was measured with respect
to the timing of licks, converting spike timing to spike phase. We
observed that while the spike rate is the dominant factor for coding
taste information, temporal information also contributes. Finally,
the latter contribution is greater when the spike timing is relative to
the timing of licks. Thus, the ability to distinguish between tastes is
improved when spike rate and timing are interpreted relative to the
timing of licks.

Materials and Methods
Data acquisition
The experiments in this study are performed
on 12 wild-type C57BL/6J adult mice (10–
20weeks old; six males and six females). Mice
are purchased from The Jackson Laboratory; on
arrival, mice are housed on a 12/12 h light/dark
cycle and had ad libitum access to food and
water. Experiments and training are performed
during the light portion of the cycle.

The experimental dataset consists of
529 neurons: 283 neurons come from a previ-
ously published dataset (Bouaichi and Vincis,
2020), while 246 neurons come from addi-
tional recordings. It is important to note
that there are no differences in experimen-
tal conditions between the two datasets.
Six days before training began, mice are
water restricted and maintained at 85% of
their presurgical weight. All experiments
are reviewed and approved by the Florida
State University Institutional Animal Care
and Use Committee (IACUC) under protocol
PROTO202100006. Before surgery, mice are
anesthetized with a mixture of ketamine/dex-
medetomidine (70 and 1mg/kg, respectively).
The depth of anesthesia is monitored regularly
via visual inspection of breathing rate, whisker
reflexes, and by periodically assessing (every
30min) the tail reflex. Anesthesia is supple-
mented by 1

4 the original dose of ketamine as
needed throughout the surgery. A heating pad
is used to maintain body temperature at
35°C. At the start of surgery, mice are also
dosed with dexamethasone (1–4mg/kg) and
lidocaine or bupivacaine HCl 2% with epi-

nephrine (2–4mg/kg diluted to 0.5% solution, s.c.). In addition, lactate
solutions are administered every 0.5 h during surgery at volumes
of 0.5 ml. After the achievement of surgical level of anesthesia, the
animal’s head is cleaned, disinfected (with iodine solution and 70%
alcohol), and finally fixed on a stereotaxic holder. A small craniot-
omy is made over the gustatory cortex (GC; relative to bregma:
11.2 AP; 13.6 or �3.6 ML) and a movable array of 8 tetrodes and
one single reference wire (Sandvik-Kanthal, PX000004 with a final
impedance of 200–300 kV for tetrodes and 20–30 kV for the refer-
ence wire) are slowly (over 10–15 min) lowered to reach a final
position 100–150 mm dorsal to GC and fixed on the skull using
dental acrylic; they are further lowered 200 mm before the first day
of recording and 80 mm after each recording. Next, a small and light
head-bolt is cemented to the acrylic head cap for restraint. In addi-
tion, a second craniotomy is then drilled on top of the visual cortex
where a ground wire (A-M Systems, catalog #781000) is lowered
300 mm below the brain surface. Before implantation, tetrode wires
are coated with a lipophilic fluorescent dye (DiI; Sigma-Aldrich),
allowing us to visualize the exact location of the tetrode bundle at
the end of each experiment.

One week after the start of the water restriction regimen, mice are
progressively habituated to head-restraint procedures. During restrain-
ing, the body of the mouse is covered with a semicircular opaque plastic
shelter to constrain the animal’s body movements without stressful con-
striction (Fig. 1A). The taste delivery system, licking detection and be-
havioral paradigm are described in detail in (Bouaichi and Vincis, 2020).
Briefly, the behavioral training and recording sessions take place within
a Faraday cage (Type II 36X36X40H CleanBench, TMC) to facilitate
electrophysiological recording. Mice are habituated to be head restrained
for short (5min) daily sessions and gradually progressed (over days) to-
ward longer sessions. Following the habituation to restraint, they are
trained with a fixed ratio schedule, in which the mice learn to lick a dry
spout six times to trigger the delivery of 3ml of one of four prototypical

Figure 1. A, Sketch showing a head-restrained mouse licking a spout to obtain gustatory stimuli or water. B, Left, Example
of histologic section showing the tetrode tracks (magenta) in the GC. Right, Schematic reconstruction of the tetrode tracks of
all the mice used in this study (red). In magenta the reconstruction of the track corresponding to the histologic section shown
on the left. C, Top panel, Diagram of the taste delivery paradigm. Gustatory stimuli and water (T) are delivered after six consec-
utive dry licks (D) to the spout using a fixed ratio (FR) schedule. Each lick is denoted by a vertical line. Bottom panel, Raster
plot of licking activity in a 2-s time interval centered at the taste delivery (time 0) from one experimental session. D, Top panel,
Raster plot of spiking activity from a GC neuron centered at the taste delivery, where each tick mark represents a spike.
Bottom panel, Corresponding raster plot of licking activity. Spike and lick tick marks are grouped together and color-coded
with sucrose (S) in pink, NaCl (N) in green, citric acid (C) in orange, quinine (Q) in purple, and water (W) in brown.
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tastants: 200 mM sucrose, 50 mM NaCl, 10 mM citric acid, 0.5 mM

quinine, or pure water (Fig. 1C). The tastes and concentrations were
chosen for multiple reasons: (1) the concentrations of all four gusta-
tory stimuli are well above their detection threshold in mice
(Boughter et al., 2005; Delay et al., 2006; Ishiwatari and Bachmanov,
2012); (2) the sour and bitter stimuli are not too aversive, so that the
animals remain engaged in the task and actively lick for a substantial
number of trials (at least 15 for each taste, allowing proper statistical
analysis of neural data); (3) they provide compatibility with prior
awake-behaving taste electrophysiology studies in mice (Graham et
al., 2014; Levitan et al., 2019; Dikecligil et al., 2020); (4) they repre-
sent a broad range of taste qualities and hedonic values. The choice
of using a single 3 ml droplet of fluid as stimulus originated from ex-
perimental evidence indicating that mice are capable of discriminat-
ing taste in a single 2-ml droplet (smaller than the amount used in
our study) of taste solutions delivered from a licking spout (Graham
et al., 2014). In addition, GC taste tuning profiles recorded in ac-
tive licking mice using a single 2 ml (Dikecligil et al., 2020), 3 ml
(Bouaichi and Vincis, 2020), or 6 ml (Chen et al., 2021) droplet of
fluid are comparable with those obtained in a recent mouse study
in which larger boli (12 ml) of taste were delivered through intraoral
cannulae (Levitan et al., 2019). The presence in our dataset of
neurons responding to both tastants and water could represent evi-
dence of tactile and thus a multimodal component. Water-specific
responses have been reported in many brain regions of the gustatory
neuraxis including the periphery (Zocchi et al., 2017) as well as
hindbrain (Nakamura and Norgren, 1991; Rosen et al., 2010) and
forebrain (Verhagen et al., 2003; Gutierrez et al., 2010; Bouaichi and
Vincis, 2020; Chen et al., 2021) areas. Often these water responses
are classified as tactile (i.e., somatosensory) and discounted as not
“taste mediated,” but the data presented previously (Rosen et al.,
2010; Zocchi et al., 2017; Bouaichi and Vincis, 2020), as well as our
current data, argue against this view. Our analyses suggest that the
spiking activity of some GC neurons contain sufficient “water-spe-
cific” information such that a pattern classifier can discriminate
water from all the other stimuli. If all water responses were exclu-
sively somatosensory (i.e., encoding common tactile inputs from all/
some of the fluids within the oral cavity), the decoding analysis
would not be able to discriminate water from all the other tastes.
Voltage signals from the tetrodes are acquired, digitized, and band-
pass filtered (300–6000 HZ) with the Plexon OmniPlex system
(Plexon) at a sampling rate of 40 kHz. Single units are then sorted
offline using a combination of template algorithms, cluster-cutting

techniques, and examinations of interspike interval plots using
Offline Sorter (Plexon).

Experimental design and statistical analysis
Preprocessing by binning or smoothing
Raw neuronal spike trains are represented mathematically as 4000-
dimensional vectors, with one entry per millisecond of experimental
data collection. Each spike train vector’s entries are valued in {0, 1}, with
a 1 indicating a neuronal spike at the associated time. To improve the
robustness of comparisons between spike train vectors and to overcome
the stochasticity that is inherent in these data, spike train vectors can be
processed using binning or smoothing. Binning is a standard technique
in which time is partitioned into bins, and the number of spikes per bin
is determined and used as a coarse-grained representation of the spike
train. An alternative approach is to use smoothing. The smoothing oper-
ation consists of replacing the raw {0, 1}-valued spike train vector with a
vector taking continuous positive values, achieved by convolving the raw
signal with a Gaussian kernel. Intuitively, each spike in the spike train is
replaced by a smooth “bump” and the spike train is represented overall
as the aggregation of these bumps. This leads to a parametric spike train
model, with the parameter describing the size, or the smoothing win-
dow, of each bump, with a larger smoothing window leading to a
smoother functional representation. Figure 2 shows a raw spike train, to-
gether with both binned and smoothed versions of the same sample.

Support vector machine (SVM) classification
After choosing a smoothing (or binning) window, the neural spike train
dataset is transformed into a collection of vectors, each corresponding to
one experimental trial. Each trial in the dataset is classified hierarchically
according to neuron ID and tastant for the trial. Thus, several vectors are
associated with a single neuron, depending on how many trials were run
with different tastants. To quantify single-neuron tastant decoding per-
formance, we adopt a classical tool from machine learning called a SVM
to determine a classification score for each neuron. Each neuron gets a
classification score for the full collection of five tastants, as well as a clas-
sification score for each pair of tastants.

A classification experiment for a single neuron’s ensemble of spike
trains consists of separating the ensemble of vectors into a training set
consisting of 67% of the spike trains and a testing set consisting of the
remaining 33% of the spike trains. The training set is used to fit parame-
ters for the SVM model. Intuitively, the SVM searches for hyperplanes
that best separate the various classes (i.e., points corresponding to trials
for different tastants) within the dataset. The trained model can then be

Figure 2. Binning and smoothing of neuronal spike trains. Top row, Raw spike train consisting of a {0, 1}-valued time series over 4000 ms with one spike count (S.C.) for each millisecond.
Taste delivery occurs at time 0. Middle row, Binned versions of the same raw spike train with various bin widths. Responses are a spike count for the bin. Bottom row, Smoothed versions of
the same raw spike train with various smoothing window sizes. Responses are in arbitrary units (A.U.).
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used to classify the testing dataset, resulting in a classification score for
the experiment, measured as the percentage of correctly classified points.
This procedure is repeated 20 times for each neuron, each time using a
different partition of vectors into training and testing sets, and the classi-
fication scores are averaged over these trials to obtain an overall classifi-
cation score for the neuron.

Rate and phase codes
To ascertain the roles of firing rate and temporal phase in single neuron
tastant coding, we first introduce a simple method to reduce a spike train
to a Rate-Phase code (RP code), consisting of two numbers. Recall that,
for each trial, times at which the animal licks the tastant spout are
recorded. The time axis for each neuronal spike train can then be subdi-
vided into interlick intervals between these licks. The RP codes for the
spike trains are constructed as follows. For all spike trains, a fixed num-
ber of five interlick intervals in the spike train are considered. The rate
code R for a spike train is the average number of spikes per interlick
interval considered. To compute the phase code P, we first compute the
mean phase of the spikes in each interlick interval: each spike in the
interval is assigned a relative position in [0, 1), with 0 corresponding to a
spike concurrent with the starting lick of the interval and 1 correspond-
ing to a spike immediately before the terminal lick of the interval.
Finally, P is the average of these individual spike phases. The RP code for
the spike train is the ordered pair (R, P). If the associated lick spike train
does not contain enough licks to construct the necessary five interlick
intervals, or in the case that the neuron does not fire in any of the inter-
lick intervals considered, then the spike train is removed from this
analysis.

To each neuron and each pair of tastants, we associate three separa-
tion scores to quantify the distinguishing power of the neuron for those
tastants in terms of pure rate code, pure phase code and a combination
of rate and phase. The rate only, phase only, and combination separation
scores are computed by determining the ability of a vertical, horizontal
or arbitrarily-oriented line, respectively, to separate samples from the
two tastants in the RP-plane.

Elastic shape analysis (ESA)
While the analysis of rate and phase codes described above gives insights
on the coding methodology of sensory neurons, the reduction in com-
plexity in transforming a full 4000-dimensional spike train to a pair of
numbers is extreme. Another approach is to employ the methods of ESA
(Srivastava and Klassen, 2016), which has proven successful in many
applications involving big and complex data (see Klassen et al., 2004; Lu
and Marron 2014; Marron et al., 2015; Amor et al., 2016) for some gen-
eral applications; Wu and Srivastava, 2011a, b, 2012, 2013) for specific
applications to neuronal spike train analysis. We employ this second
approach for classification of neuron activity, in addition to the Rate-
Phase code, since the classification uses the full distribution of spike
timing, rather than just the mean. The numerical pipeline for taste
classification of spike trains using ESA that we used was built on the
open-source library of Dereck Tucker, which is available on GitHub:
https://github.com/jdtuck/fdasrsf_python.

A key problem in functional data analysis consists of defining and
finding optimal registrations, correspondences between points across
data. In our setting this corresponds exactly to the problem of separating
spike timing and rate. Current data analysis techniques often solve for
registration as a preprocessing step, and follow it with a statistical
analysis that is independent of the registration metric. That is, the
“phase information” is not used. In our ESA for neuron classification,
we used this phase information. The registration of a data stream
requires stretching and compressing of time, a process called time
warping. Intuitively, the aim is to find the optimal time warping of a
data stream so that it best aligns with another, reference data stream.

As an example, consider two smoothed spike train functions f and g
defined over the time interval [0,T]. There are many ways to measure
the distance between functions of this form; we choose the extended
Fisher–Rao metric (Bauer et al., 2016; Srivastava and Klassen, 2016),
defined by the following:

distFRðf ; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT

0

�
sgnðf 9ðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
jf 9ðtÞj

p
� sgnðg9ðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
jg9ðtÞj

p �2

dt

s
;

(1)

where f 9 denotes the derivative of the function f and sgn is the sign func-
tion, i.e., sgn(s) = 1 if s� 0 and otherwise sgn(s) = –1. The reason for
choosing this metric is that it is invariant under time warpings of the data.
A time warping is represented mathematically as a smooth invertible func-
tion g with positive derivative over the domain [0, T]. The time-warping
of a function f by the warping function g , which we refer to as an align-
ment function, is given by function composition, denoted as f 8 g . For the
Fisher–Rao metric, invariance under time warpings means that

distFRðf ; gÞ ¼ distFRðf �g ; g�gÞ (2)

for any alignment function g . We consider a signal f to have the same
rate code as any time warping f 8 g . The distance between the rate codes
of signals f and g can be computed by solving the optimization problem

inf
g 1 ;g2

distFRðf �g 1; g
�g 2Þ;

where the infimum (i.e., minimum) is over pairs of alignment functions.
Because of the invariance property (2), this is equivalent to minimizing
the distance distFRðf ; g�gÞ over a single alignment function g . In prac-
tice, this is solved by discretizing the time domain and the input signals f
and g and optimizing over g using a dynamic programming algorithm.
For the minimizing alignment function g , the traces of the signals f and
g 8 g give a visualization of the similarities and differences between the
rate codes of the signals f and g, whereas the trace of g illustrates the rel-
ative phase differences between the signals.

Figure 3 shows two examples of optimal alignments between signals
(smoothed spike trains) using ESA. In the first example, the two signals
have the same rate, but differ significantly in phase (Fig. 3A). After align-
ment they are identical (Fig. 3C). Thus, the alignment yields two signals
with the same number of peaks of equal sizes, indicating that the spike
rates are identical, and the alignment function (Fig. 3B) applied to the
blue trace indicates how the timings differed from those of the red trace.
The second example shows a case where the smoothed signals have dif-
ferent rates, although the original spike trains have equal numbers of
spikes. In one case (Fig. 3D, red), spikes are clustered together so that
the signal after smoothing is a single large peak. In the other, the same
number of spikes are separated sufficiently so that there are two distinct
peaks in the smoothed signal (Fig. 3D, blue). The smoothed signals are
therefore different in both rate and timing. The alignment function (Fig.
3E) applied to the blue trace cannot completely reconcile the two signals;
the red signal has a single peak while the aligned blue signal still has two
peaks, but is now aligned with the larger red peak. The differences in
spike rate of the smoothed signals are preserved.

After the registration process, we have represented our data as f and g 8
g , and the corresponding alignment function g . To use this method in
combination with SVM classification, we align all spike trains to the mean
spike train of the population [i.e., a function that is the centroid of all spike
trains, minimizing the sum of squared distances to the samples with respect
to the extended Fisher–Rao distance (1)]. An SVM classification is then per-
formed on these aligned smoothed spike trains to determine performance
using rate only coding, since the phase component was removed by the
alignment. A separate SVM classification is also performed, this time using
the alignment functions themselves rather than the smoothed spike trains,
providing a measure of performance using phase only coding.

Results
Using a machine learning algorithm for single-neuron taste
discrimination
To investigate how neurons within the primary taste cortex
encode gustatory information in freely licking mice (Fig. 1A), we
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made recordings using bundles of tetrodes implanted unilaterally
in the GC (Fig. 1B). After habituation to head restraint, water-
deprived mice were engaged in a task in which they had to lick a
dry spout 6 times to obtain a 3mL drop of one of five gustatory
stimuli (200 mM sucrose, 50 mM NaCl, 10 mM citric acid, 0.5 mM

quinine, water; Fig. 1C). Mice were trained until the licking pat-
tern evoked by each of the individual stimuli was similar across a
1 s temporal epoch following taste delivery (Fig. 1D; for more
details, see Bouaichi and Vincis, 2020). To begin exploring the
neural dynamics evoked by intraoral stimuli, we first evaluated
using SVMs as a tool for decoding taste information from single
neurons. This process was run using trials from all five tastants
and using trials from two tastants (running over all possible
pairs).

Comparison of binning and smoothing for SVM classification
The calculation of the classification score is influenced by how
the spike train data are represented. The raw form, essentially a
collection of action potential times, has very little overlap of spike
trains regardless of the tastant applied, so while it provides suffi-
cient information for rate-code classification, it is not optimal for
classification that uses temporal overlap of neural activity as well
as rate. A more appropriate way to treat the data are to use bin-
ning. The spike train is thereby processed into a vector where
each element contains the number of spikes in a bin. The bin
width (in ms) is a free parameter that determines the size of the
vector used to represent the spike train, and will affect the classi-
fication score. This is demonstrated in Figure 4, using 10 differ-
ent bin sizes ranging from 1 to 500ms (where a size of 1ms
means that the unbinned spike trains are used). The figure shows
the classification score using all five tastants. When spike trains

from the 10% of best-performing neurons are analyzed, the clas-
sification score improves from;0.25 to;0.4 when the bin win-
dow is increased. A greater improvement is seen when only the
top 5% performing neurons are used, and when the top 1% are
used the classification score rises from;0.32 to;0.55.

An alternate approach for processing the spike train data are
to smooth it by convolving a spike train with a Gaussian func-
tion, converting the spike times into a series of bumps that can
accumulate when they occur close together in time. When this
approach is used, the classification score increases as the smooth-
ing window is increased (Fig. 4), similar to the case of binning.
However, the improvement in classification score is even greater
with smoothing, and for all window values used the classification
score is higher using smoothed data than using binned data. For
example, when the top 1% of the neurons are used, the classifica-
tion score is ;0.65 for smoothed spike trains versus ;0.55 for
binned spike trains. An additional feature of smoothing is that
the classification score is stable for all window values of 100 or
greater, so the classification results do not depend strongly on
the smoothing parameter value, as long as it is sufficiently large.

SVM with all five stimuli
Based on the results above (smoothing vs binning), we used
smoothed spike trains with smoothing window of 250ms to rep-
resent our data. We first investigated the distribution of SVM
classification scores for five stimuli across the population of GC
neurons. For each neuron, all of the smoothed spike trains were
used to compute a classification score. A classification score of 1
means that all trials in the testing set for a neuron were properly
classified according to the tastant. The classification scores for all
neurons are shown in the top row of Figure 5; each neuron has

Figure 3. Illustration of the behavior of the Fisher–Rao metric. Each row shows a different example of aligning a pair of synthetic signals (i.e., solving the optimization problem described in
the text), with responses measured in arbitrary units (A.U.). Panel A shows a pair of signals f (red, solid) and g (blue, dashed). Considering these signals as smoothed spike trains, it is clear
that the spike trains have the same firing rate, but that they differ in phase. This is made precise using the ESA framework. Solving the ESA optimization problem produces an optimal align-
ment function g , as shown in panel B. The time warped signal g 8 g is shown in panel C (blue, dashed), together with the signal f (red, solid), the traces are the same, indicating that f and
g have the same rate code. The fact that the optimal alignment function g is far from the identity tells us that the signals f and g differ significantly in phase. Panel D shows another pair of
functions f (red, solid) and g (blue, dashed), and the optimal alignment function g is shown in panel E. Observe that the graphs of f and g both enclose the same area; however, f has a single
maximum, whereas g has two local maxima. Following alignment, there are still two peaks in g 8 g (panel F), versus one in f, so the difference in rate is preserved.
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an SVM classification score based only on its pre-taste signal,
and another based only on its post-taste signal. In Figure 5A, a
histogram shows the distributions of pre-taste classification
scores (in yellow) and post-taste scores (in pink and blue). Figure
5B focuses only on the post-taste scores.

To analyze the distributions of classification scores, we used
two statistical tests: D’Agostino and Pearson’s normality test
(D’Agostino, 1971; D’Agostino and Pearson, 1973) and a one-
sided t test on the mean classification score. Both tests were run

separately on the pre-taste and post-taste scores. On the pre-taste
set, D’Agostino and Pearson’s normality test showed the classifi-
cation scores are not normally distributed (K2 statistic = 12.278,
p = 0.00216 for H0: the sample is normally distributed). However,
examination of the quantile-quantile plot in Figure 5C shows only
a slight departure from the theoretical normal quantiles occurring
mostly at the tails. A departure from normality in the sample dis-
tribution does not, however, render a t test invalid. Validity of this
test requires that the sample means are normally distributed, not
the sample itself. This condition is met for sufficiently large
samples because of an application of the Central Limit Theorem
(Kwak and Kim, 2017). In addition, t tests are relatively robust to
deviations from this normality assumption (Sawilowsky and Blair,
1992). When a t test was performed, the mean successful clas-
sification of pre-taste spike trains was determined to be no bet-
ter than random guessing (t statistic = �1.76, p = 0.9602 for
H0 : mpre ¼ :2 and HA : mpre.:2).

In contrast to the pre-taste scores, the classification scores
for post-taste spike trains show a much greater skewness to-

ward good-performing neurons (Fig.
5B). D’Agostino and Pearson’s test on
the post-taste classification rates show
a very large departure from normality
(K2 statistic = 265.443, p =2.290� 10– 58

for H0: the sample is normally distrib-
uted). Examination of the quantile-
quantile plot (Fig. 5D) shows a large
departure from the theoretical quan-
tiles across the entire distribution. The
mean of these classification rates is signifi-
cantly above random guessing (t statistic=
13.428, p =7.08� 10–36 for H0 : mpost ¼ :2
and HA : mpost.:2). These results dem-
onstrate that the neural signals before
taste administration are little more than
noise, but that there is indeed a signifi-
cant signal in the post-taste data. In par-
ticular, there are ;50 (or 10% of the
neurons analyzed) that are “coding neu-
rons” in the sense that they successfully
classify information from all five tast-
ants, demonstrated by a score more
than one standard deviation greater
than the population mean.

SVM with taste pairs
We next investigated a binary classification
task, testing the ability of the SVM applied
to neural spike trains to distinguish be-
tween a pair of taste stimuli. In this test,
training of the SVM was performed on
spike trains in response to each of two tast-
ants and SVM classification scores were
obtained for each combination of neuron
and taste pair. The results for selected taste

pairs are shown in Figure 6A–D. The key findings are similar to
those from the analysis with all tastants: while the pre-taste clas-
sification scores were mostly noise, the post-taste classification
scores were skewed and had a mean that is significantly above
random guessing. For spike trains of some neurons, the SVM
was not successful at distinguishing between two tastes.
However, for many of those neurons in which the SVM was suc-
cessful (the top 10–20%), the classification score was very

Figure 4. SVM classification scores of all five tastants and full-length spike trains treated
with varying smoothing and binning parameters. At each parameter level, the mean classifi-
cation rate among the best-performing 1%, 5%, and 10% of neurons is plotted.

Figure 5. Top row, Histogram of the SVM classification scores for all five tastes on the pre-taste and post-taste data (A)
and a closer look at the post-taste scores (B). High post-taste scores are colored in blue, and the corresponding neurons are
referred to as “coding neurons.” Bottom row, Quantile-quantile plots for the SVM scores using pre-taste data (C) and post-
taste data (D). For reference, the red lines indicate the quantiles of a normal distribution.
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good. There is also a significant amount of overlap between
the coding neurons for different taste pairs. As shown in the
cumulative distribution histogram of Figure 6E, ;60% of
the total population of neurons studied are coding neurons
for at least one taste pair (i.e., the classification success rate
is greater than one standard deviation from the mean).
Approximately 30% of the neurons are coding neurons for
at least two taste pairs, and ;20% are coding neurons for at
least three taste pairs. The very best neurons (1% of the
population) are coding neurons for all 10 taste pairs.

Overall, these first set of results indicate that SVM classi-
fiers are an effective method for quantifying taste informa-
tion and for identifying neurons that best encode that
information.

Using averaging to determine the contributions of spike rate
and phase in taste classification
The next task is to determine the relative contributions of
spike rate and phase to overall decoding performance. We
begin by using a Rate-Phase code (RP code) that is based on
the mean spike rate (R) between consecutive licks and the
mean phase (P) at which spiking occurs between consecu-
tive licks, as discussed in Materials and Methods.

Each spike train is divided into interlick intervals
½ti�1; tiÞ; i ¼ 1; :::; 5, where t0 = 0 is the time of the first lick
at which a tastant was administered and ti denotes the time
of the ith subsequent lick. The rate code R is then the aver-
age number of spikes per lick interval. If a spike occurs at
time t in interlick interval ½ti�1; tiÞ, the phase for the spike is
given by ðt � ti�1Þ=ðti � ti�1Þ. The phase code P for the full
spike train is the average of these individual phases over all
spikes.

Once the RP codes were computed for a neuron, infor-
mation for each spike train was plotted as a point in the RP-
plane. This resulted in a cloud of points in the RP-plane,
reflecting the neuron’s responses to two different tastants as
demonstrated in Figure 7. We then searched for the line
that separated the greatest number of observations based on
taste, using three methodologies. Scanning over vertical
lines, we obtained a rate separation score: for each vertical
line, we compute the maximum of:

ð] Tastant 1 points left of lineÞþ ð] Tastant 2 points right of lineÞ
total number of points

; and

ð] Tastant 2 points left of lineÞþ ð] Tastant 1 points right of lineÞ
total number of points

;

and defined the rate separation score as the maximum possible
value over all vertical lines. This quantifies how well the neuron
is able to separate the tastes using only average interlick firing
rate information. We computed a phase separation score by
scanning across horizontal lines and performing a maximization
using a similar formula. This quantifies the ability of the neuron
to distinguish the two tastes using only average interlick phase
information. Finally, we computed a combination separation
score by scanning over all lines of arbitrary slope and maximiz-
ing a similar function, thereby quantifying the ability of the neu-
ron to distinguish the tastes using both average interlick firing
rate and phase information. By construction, the combination
score will be at least as good as the rate or phase score alone
(compare Fig. 7).

Figure 8 shows summary results for four taste pairs. In each,
separation scores for the 50 neurons with the best combination
separation scores are shown. For all of these, 80% or more of the

Figure 6. A–D, Support vector machine classification rates on selected taste pairs using post-taste test set spike trains. The distributions are heavily skewed toward good-performing coding
neurons, colored in blue. E, A cumulative distribution histogram of the fraction of neurons that are labeled as coding neurons for one or more taste pairs.

Figure 7. Rate-Phase code for the two tastants Water and NaCl. The orange line shows
the best separation of the data based on mean rate only, the green line shows the best sep-
aration based on mean phase only, and the blue line is the best separating line based on
both mean rate (R) and mean phase (P).
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points could be successfully separated using the simple RP code.
Thus, the combination of mean spike rate and phase was quite
successful at clustering spike trains according to the taste stimu-
lus. For some neurons and taste pairs, the best separation was
achieved using pure rate separation (orange dots) or pure phase
separation (green dots), but in the vast majority of cases the best
separation required a combination of the two (blue dots).
Among the better neurons, the rate separation score was better
than the phase separation score: among the top ten neurons the
average rate separation score was better than the phase separa-
tion score.

The separation scores using either R or P alone become simi-
lar after the first;25 neurons. In fact, among the top 50 neurons
for each taste pair on average the rate separation score is only
better in 23.5 cases. The separation scores for rate decrease
quickly over the best neurons, while the scores for phase stay
more constant. To quantify this, we calculated the mean R and
P-score for the best 10 and 50 neurons for all 10 taste combina-
tions: for the 10 best neurons the mean R-score is in six cases
(Citric Acic–Sucrose, Citric Acid–Salt, Citrid Acid–Water,
Sucrose–Quinine, Salt–Quinine, and Sucrose–Salt) significantly
better (p-value in the t test below 0.05). Repeating the same anal-
ysis for the best 50 neurons we obtain that the mean R-score is
only in three cases (Citric Acic–Sucrose, Citric Acid–Salt, and
Sucrose–Salt) significantly better (p-value in the t test below
0.05), while the P-score is in one case significantly better
(Water–Quinine). For the remaining cases no statistically signifi-
cant statement can be made.

Using elastic shape analysis to quantify rate and temporal/
phase coding
The simple RP code used in the previous section employs an
extreme dimension reduction of the data that provides an intui-
tive metric for quantifying the contributions of rate and phase
coding to taste discrimination. However, the dimension reduc-
tion averages out many features of spike train timing. In this sec-
tion we employ a functional data analysis technique that does
not use this averaging step, and thus is more appropriate to prop-
erly assess spike timing information. In particular, we use the
ESA technique to find the optimal alignment of a group of spike
trains, as described in Materials and Methods. To evaluate the
relative contribution of rate and temporal/phase coding in GC
neurons, we perform ESA alignment in two ways: with no

consideration of when licks occur and by using
the licks to partition time into interlick intervals.
Since the latter alignment considers spike timing
relative to the licking times, it provides phase
information.

ESA with unconstrained alignment
With the first application of ESA, disregarding
lick timing, an “average spike train” is com-
puted for each neuron, where the averaging is
done over the set of all post-taste spike trains
for that neuron (specifically, the average is a
function that minimizes the sum of squared
distances to the samples, with respect to the
Fisher–Rao metric). Then, each spike train is
optimally aligned to the average spike train.
The optimization is performed by determining
an alignment function, as described in Materials
and Methods. Thus, for each neuron, the ESA
process results in a collection of aligned post-
taste spike trains and an accompanying collec-

tion of alignment functions. The aligned spike trains lack accu-
rate spike timing information (it was removed by the alignment),
but contain rate information. The alignment functions contain
information on when spikes occurred relative to those in the
mean spike train, and thus contain spike timing information. It
is therefore possible to perform an SVM classification using the
aligned spike trains as well as a second SVM classification using
the alignment functions themselves, thereby determining classifi-
cation scores using spike rate and spike timing, respectively. The
terminology that we use for the spike trains and alignment func-
tions is summarized as:

• Original (smoothed) spike train: the spike train smoothed
with a smoothing window of 250 ms. It contains rate and
spike timing information.

• Aligned spike train: contains rate information for the 2-s-
long post-taste interval without regard to lick timing.

• Alignment function: contains spike timing information for
the 2-s-long post-taste interval without regard to lick timing.

• Interlick aligned spike train: contains spike rate information
within lick intervals.

• Interlick alignment function: contains spike timing informa-
tion within interlick intervals (i.e., phase information).

Figure 9 shows examples in which this ESA technique is used
to classify spike trains in response to four taste pairs. In each
panel, the 50 best neurons determined using the SVM classifica-
tion scores for the original spike trains (which contain both spike
rate and spike timing information) are shown in blue along with
classification scores using the aligned spike trains (orange) and
the alignment functions (green). For many neurons, the classifi-
cation score using the aligned spike trains is almost as good as
that using the original spike trains, and in a few cases even better.
For example, in the case of citric acid versus sucrose, the classifi-
cation score for the aligned spike trains is at least as high as that
for the original spikes train in 18 out of 50 neurons, and on aver-
age the aligned spike train score is 96.2% as large as the original
spike train score. The classification scores based on the align-
ment functions are somewhat lower. In the case of citric acid ver-
sus sucrose, this score is greater than that using the original spike
trains in four out of 50 neurons and on average is 79.5% as large
as the classification score using the original spike trains. These
analyses show that using both spike rate and spike timing gives

Figure 8. Separation scores for selected taste pairs applied to the best 50 neurons for each stimulus pair (A, citric
acid vs. sucrose. B, sucrose vs. salt. C, salt vs. water. D, water vs. quinine).
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better classification for taste pairs. When the
aligned spike trains (which preserve spike rate) are
used in the classification, the classification score
goes down, but is better than when only the align-
ment functions (which provide the spike timing
information) are used in the classification.

ESA with alignment performed on interlick
intervals
For the second ESA experiment, we performed
the alignment on each interlick time interval.
Since we use the first five post-taste interlick inter-
vals in the analysis, each spike train is split into
five aligned spike trains and five alignment func-
tions. These are then concatenated to form a sin-
gle post-taste aligned spike train and a single
interlick alignment function. The interlick align-
ment functions are now an indicator of spike
phase relative to licks, so using SVM classification
on these alignment functions demonstrates how
well tastes are differentiated using a pure phase
code. The results using four taste pairs are shown
in Figure 10, which is formatted in the same way
as Figure 9.

Once again, SVM classification using the
original spike trains typically performed best
(blue circles), and classification using the interlick
aligned spike trains (orange) typically outper-
formed classification using the interlick alignment
functions (green). For example, in the case of citric
acid versus sucrose, the classification score for the
interlick aligned spike trains is at least as high as
that for the original spike train in 19 out of 50
neurons, and on average the interlick aligned spike
train is 98.5% as large as the original spike train.
For classification using the interlick alignment
functions, the score is greater than that using the
original spike trains in two out of 50 neurons and
on average is 83.8% as large as the classification
score using the original spike trains.

ESA on all five stimuli
Next, we analyzed the classification ability for all
five tastants, rather than for tastant pairs (Fig. 11).
In this case, random guessing would result in an
average classification score of 0.2. For the 50 best
neurons (based on the original spike trains), the
classification was always much better than what
would be expected from random guessing.

As in the two previous figures, the best classifi-
cation scores were typically obtained when the
original spike trains were used in the classification
(blue), followed by classification scores with
aligned spike trains (orange) and finally classifi-
cation using the alignment functions (green). In
Figure 11A, the alignment was applied over the
entire post-taste time period, without regard to
lick timing. In Figure 11B, it was applied sepa-
rately to each interlick interval. Both the classifi-
cation scores using aligned spike trains and using
alignment functions were generally closer to
those using the original spike trains in the latter
case, where the alignment was applied to interlick

Figure 9. SVM classification on four selected stimuli pairs (A, citric acid vs. sucrose. B, sucrose vs. salt. C, salt
vs. water. D, water vs. quinine). In each case, the 50 best neurons based on SVM classification of original spike
trains are used and the classification score is in blue. The classification scores using the aligned spike trains are in
orange, and those using the alignment functions are in green. The ESA and SVM classification are performed on
spike trains after administration of the stimuli and without consideration of lick timing.

Figure 11. SVM classification scores for all five tastants. The classification uses either original spike trains
(blue), aligned spike trains (orange), or alignment functions (green). A, Alignment is performed over the entire
2-s post-taste time interval. B, Alignment is performed on five individual post-taste interlick intervals.

Figure 10. SVM classification on four selected stimuli pairs in which alignment is performed over interlick inter-
vals (A, citric acid vs. sucrose. B, sucrose vs. salt. C, salt vs. water. D, water vs. quinine). In each case, the 50 best
neurons based on SVM classification of original spike trains are used and the classification score is in blue. The
classification scores using the interlick aligned spike trains are in orange, and those using the interlick alignment
functions are in green.
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intervals. On average, the classification score for the aligned
spike train is 87.3% as large as that for the original spike train
when aligning over the entire post-taste time interval, while it is
97.0% as large when aligning over interlick intervals. Similarly,
the average classification score using the alignment functions
relative to that using the original spike trains was 75.9% as large
when alignment was performed over the entire post-taste time
interval, and a higher 82.8% when performed over individual
interlick intervals (and thus providing spike phase information).

ESA constrained to random intervals
The data in Figure 11 show that the SVM classification scores for
aligned spike trains and alignment functions do not drop when
the post-taste data were partitioned into five interlick intervals.
This could be explained in either of two ways: (1) regardless of
the lick partitioning, in the phase ESA the taste information is
still high because we are analyzing a five-lick post-taste temporal
window that could contain more chemosensory-related taste in-
formation (Katz et al., 2001; as opposed to the “full” 2-s-long
poststimulus interval in the temporal ESA) or (2) the spike rate
and spike timing relative to the lick interval contained nontri-
vial taste information. To determine which explanation is true,
we next ask whether a similar taste decoding performance is
achieved by splitting the five-lick-long post-taste temporal win-
dow spike trains into five randomly chosen time intervals
(112.466 20.47ms). That is, we still split up the five-lick post-
taste interval into five subintervals, but without regard to when
licks occur. The randomized partitioning was performed 20
times for each neuron, and the resulting classification scores of
these 20 experiments were averaged to mitigate the effects of
the particular random partitions chosen. As shown in Figure
12A, the classification scores are lower when the spike train is
partitioned into five random intervals than when the neural ac-
tivity is partitioned into five lick intervals (paired t test; see

Table 1). Thus, taste decoding in terms of either rate or phase is
more effective when the time intervals on which ESA is per-
formed correspond to the interlick intervals. Overall, our
results suggest that the lick cycle is a key factor for taste
processing.

Discussion
Multiple studies have been performed over the past three decades
on the taste response profile of GC neurons in awake rodents
(Samuelsen and Vincis, 2021). Extracellular recordings from
animals receiving taste stimuli administered through intraoral
cannulae highlighted the importance of seconds-long temporal
dynamics of taste-evoked spiking activity (Katz et al., 2001).
Neural data recorded from rodents that actively lick a spout to
receive taste stimuli revealed further rich and interesting tem-
poral dynamics (Stapleton et al., 2006; Gutierrez et al., 2010;
Bouaichi and Vincis, 2020). One observation was that cortical
taste responses displayed shorter latency when the stimulus was
obtained through licking, suggesting that the temporal dynam-
ics may vary depending on whether a taste is obtained passively
or actively. Another observation was that the spiking activity of
a large proportion of GC neurons display lick-coherent activity
(spiking in the 5- to 10-Hz frequency domain; Stapleton et al.,
2006; Bouaichi and Vincis, 2020), suggesting that the stereotyp-
ical rodent licking activity may act as a metronome against
which GC spikes can be coordinated (Gutierrez et al., 2010).
Based on this latter point, we hypothesized that (1) changes in
the rate of spike trains within “lick-cycle-long” time intervals
(as opposed to rate changes over randomly defined and lick-
unrelated temporal windows) and (2) the phase of spiking rela-
tive to lick timing are good discriminators of taste that can be
used by GC neurons in active licking mice.

Consistent with previous reports (Levitan et al., 2019;
Bouaichi and Vincis, 2020), our results indicate that GC neu-
rons can discriminate between the different taste stimuli using
changes in the spiking rate over a long post-taste temporal win-
dow. Our analysis tools allowed us to quantify the rate contri-
bution separately from the temporal contribution to coding.
While clearly the dominant factor, rate information was com-
plemented by the timing of spikes in almost all identified cod-
ing neurons (Figs. 8-12).

It has long been known that neurons can encode sensory in-
formation via the number of spikes within a given time interval

Figure 12. A, Box plot depicting the proportion of the “rate” (aligned; orange) and “temporal” (alignment functions, green) scores to the original SVM score, from two different types of
ESA experiments (phase and randomized). Left boxes (phase), ESA is performed on spike trains in five interlick intervals. Right boxes (randomized), ESA is performed on spike trains in five ran-
dom intervals. Table 1 below provides the information of each statistical comparison. B, Example raster plot of spiking during the first two interlick intervals in response to two tastants. At the
bottom, the spike timings over all trials are represented as smoothed green or blue bumps. The overall SVM classification score for this neuron was 90%, and when classification was performed
using aligned spike trains in interlick intervals, the score was 96.3%, and when using the alignment functions in the classification, the score was 89.3%.

Table 1. The statistics and p-values associated with the comparison between
the ESA types in Figure 12A

ESA types Score type t statistic p-value

Phase vs randomized Aligned/original 8.7596 1.3490� 10–11

Alignment functions/original 8.9008 8.2896� 10–12

The neurons shown in the phase ESA plot were used in the randomized experiment, so there is a direct neu-
ron-to-neuron comparison. mD denotes the mean of the differences between each neuron’s phase ESA score
and randomized ESA score. The appropriate test to compare the samples was a paired t test with
df ¼ 49; H0 : mD ¼ 0, and HA : mD 6¼ 0.
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(Adrian, 1926), but the time intervals used are often chosen
arbitrarily. In our experimental settings, mice actively sample
taste stimuli via the rhythmic and stereotypical behavior of lick-
ing (Travers et al., 1997) that can serve as a metronome allow-
ing GC neurons to extract and analyze sensory information in
discrete interlick time intervals. Indeed, our analysis indicated
that the taste information contained in the spike count of GC
neurons is higher when rate is computed over interlick intervals
(Figs. 10, 12). If the information needed by GC neurons to dis-
criminate different tastants is contained in short temporal
intervals (such as between licks), it could allow the animal to
rapidly discriminate between two different taste cues. This is in
agreement with behavioral studies showing that rodents can
discriminate different taste qualities using the information con-
tained in one to two licks (Halpern and Tapper, 1971; Graham
et al., 2014) and that licking-induced synchronicity in multiple
brain areas of the taste-reward circuits plays an important role
in taste-guided discrimination tasks (Gutierrez et al., 2010).

The timing of action potentials within a specific time window
can provide substantial additional information of a stimulus
(MacKay and McCulloch, 1952; Bair and Koch, 1996). Studies of
the somatosensory and olfactory systems in active sensing
rodents have indicated that the spike timing relative to whisking
(Curtis and Kleinfeld, 2009) or sniffing can contribute to the
neural representation of sensory stimuli (Smear et al., 2011;
Shusterman et al., 2011). In the taste system, studies have shed
some light on the potential role of neural activity time-locked to
the lick cycle (Stapleton et al., 2006; Gutierrez et al., 2010;
Roussin et al., 2012; Bouaichi and Vincis, 2020). Building on
this, our analysis revealed that spike timing relative to the lick
cycle (phase coding) contributes to taste discrimination in all of
the GC coding neurons examined. Both the Rate-Phase analysis
that employs averaging and the functional data analysis that does
not (Figs. 7, 11) revealed that the phase contains sufficient infor-
mation to distinguish among taste stimuli, providing quantitative
evidence in favor of the importance of fine-scale temporal neural
dynamics for taste-evoked activity. To evaluate the importance
of lick timing in the neural coding, we performed separate analy-
ses in which lick timing was employed and when it was not. We
found that taste discrimination improved when the rate and tim-
ing information was extracted from interlick intervals, rather
than random intervals of similar duration (Fig. 12A).

One challenge in the interpretation of our data are that, con-
sistent with other studies in behaving rodents in the taste field
(Roussin et al., 2012; Fletcher et al., 2017; Levitan et al., 2019;
Chen et al., 2021), we relied on a single concentration of tastants.
Thus, we have not tested whether the results generalize across
taste intensities. For example, recent studies have shown that a
subpopulation of neurons in the rat’s GC (Fonseca et al., 2018)
and nucleus accumbens (Villavicencio et al., 2018) track su-
crose concentration by increasing their spike coherence with
licking. Future work in active licking mice investigating the rel-
ative contribution of rate and phase GC coding in representing
taste intensity are warranted. In addition, GC neurons are het-
erogeneous as they have been shown to exhibit layer and cell
type-specific taste responses (Dikecligil et al., 2020) and are of-
ten multimodal (i.e., capable of responding to nongustatory
cues that predict or are contingent on the availability of food;
Samuelsen et al., 2012; Vincis and Fontanini, 2016; Livneh et
al., 2017; Chen et al., 2021). Thus, it might be important to
examine whether the GC neurons that encode taste information
with a combination of rate and phase coding differ in their
identity/function profile compared with the ones in which rate

code dominates. The experimental design of the current work
did not allow this level of analysis. Future studies will require
the use of a more complex experimental design and behavioral
task to better understand the observed coding effects in the
context of known GC neuron identity and function.

Our data analysis employed a support vector machine learn-
ing technique for data classification combined with elastic
shape analysis that is designed for data registration (Srivastava
and Klassen, 2016). In the context of spike trains, this registra-
tion process naturally extracts an alignment function that con-
tains spike timing information (Lu et al., 2014). By using these
functions as input to the SVM classification algorithm, one uses
timings from the entire post-taste spike trains rather than the
less information-rich mean timing. In cases where the timing of
spikes in two spike trains are clearly different and stereotyped,
averaging over interlick intervals (see Rate-Phase classification
described in Fig. 7 and employed in Fig. 8) is an effective way to
quantify rate and phase coding. However, if spike trains are not
as clearly distinct or stereotyped, then the application of ESA is
much more reliable. For example, Figure 12B shows a raster
plot of data from a coding neuron over two interlick intervals
and in response to two tastants, salt and sucrose. The neuron
fired more near the end of the first interlick interval in response
to salt, but fired mostly near the beginning in response to su-
crose. This pattern is not apparent during the second interlick
interval, when the neuron fired more uniformly in response to salt
and at the end of the interlick interval in response to sucrose.
There are clear differences in the spiking patterns, but they are far
from stereotyped across interlick intervals. However, with the ESA
analysis, this neuron performed well when alignment functions
were used in the SVM classification (SVM classification rate was
89.3% when using alignment functions). The raster plot of Figure
12B also shows a clear difference in spike rate during the first
interlick interval, which is not so clear in the second interlick
interval. The classification score using aligned spike trains picks
up the substantial difference in interlick spike rate in response to
the two tastants; the neuron has a classification score of 96.3%
when aligned spike trains were used in the classification. Overall,
the rate/phase quantification obtained using SVM classification
with ESA extracts differences in spike trains that are visible by
inspection and by using simple techniques like Rate-Phase analy-
sis, but also extracts rate/phase differences that are much harder to
see through visual inspection or averaging-based approaches.
They are therefore useful tools for separating out rate and tempo-
ral coding performed by neurons.

In conclusion, our experiments and analyses quantify the
extent by which rate and temporal information can discrimi-
nate among tastes in GC neurons, and demonstrate that the
timing of licks provides information that can enhance taste dis-
crimination and can therefore be an integral part of the rodent
taste experience.
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